منابع مشابه
Matching preclusion and Conditional Matching preclusion for Crossed Cubes
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond those inci...
متن کاملStrong matching preclusion
The matching preclusion problem, introduced by Brigham et al. [Perfect-matching preclusion, Congressus Numerantium 174 (2005) 185-192], studies how to effectively make a graph have neither perfect matchings nor almost perfect matchings by deleting as small a number of edges as possible. Extending this concept, we consider a more general matching preclusion problem, called the strong matching pr...
متن کاملMatching preclusion and conditional matching preclusion for bipartite interconnection networks I: Sufficient conditions
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond those indu...
متن کاملMatching preclusion and conditional matching preclusion problems for the folded Petersen cube
The matching preclusion number of an even graph is the minimum number of edges whose deletion results in a graph that has no perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of an even graph was introduced to look for obstruction sets beyond those induced by a single vertex...
متن کاملMatching preclusion for balanced hypercubes
Matching preclusion is a measure of robustness in the event of edge failure in interconnection networks. The matching preclusion number of a graph G is the minimum number of edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching, and the conditional matching preclusion number of G is the minimum number of edges whose deletion leaves the resultin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The University of Chicago Law Review
سال: 1990
ISSN: 0041-9494
DOI: 10.2307/1599878